The Anvil

A place to hammer out ideas

How good will my forecast be?

June 28, 2021

One of the challenging things of using a machine learning system like Forecast Forge is learning how much you can trust the results. Obviously the system isn’t 100% infallible so it is important to have an idea of where it can go wrong and how badly it can go wrong when you are talking through a forecast with your boss or clients.

One ways that people familiarise themselves with Forecast Forge is to run a few backtests. A backtest is where you make a forecast for something that has already happened and then you can compare the forecast against the actual values.

For example you might make a forecast for the first six months of 2021 using data from 2020 and earlier. Then you can compare what the forecast said would happen against the real data.

         Use data from this period      To predict here
2016         2017         2018         2019         2020       Then use the same
                                                               methodology here

Sometimes when you do this you will see the forecast do something dumb and you will think “stupid forecast. That obviously can’t be right because we launched the new range then” or something like that - the reason will probably be very specific to your industry or website. If you can convert your reasoning here into a regressor column then you can use this to make the forecast better.

Backtesting several different forecasting methods with different transforms and regressors

Read more

Follow up thoughts after #PPCchat

April 15, 2021

On Tuesday I was kindly invited to discuss PPC Forecasting as part of the regular #PPCchat Twitter chat. There is a recap put up on the official website.

#PPCchat started just over 10 years ago and, whilst I don’t think I was involved in the very first one I joined the conversation as soon as it was moved to a more convenient time for the UK timezone. It was a very important part of my week for a number of years but I’ve drifted away from the community as my work moved away from hands on PPC management and more towards digital analytics and data science. I was very flattered to be invited to be a guest on the chat and very happy to be able to help a community that has helped me a lot.

The twitter chat format felt a bit frantic so I thought I’d expand on some of the ideas and questions raised here.

The Golden Rules

Before getting into anything too complicated here are what I think the two most important things you can do to get better at forecasting are. They have nothing to do with machine learning or fancy techniques or anything like that; you should be able to apply them regardless of your current process.

  1. Actually care about being right
  2. Keep score; check how good your forecasts are against what actually happened and then try to figure out where you went wrong

If you do only these two things then your forecasting will start to improve. And you don’t even need to pay for a Forecast Forge subscription to do them!

Different types of forecast

To help clarify things and avoid talking at cross-purposes (always a risk on Twitter) I split forecasting up into three overlapping areas:

  1. Forecasting something you’ve never done before (e.g. “we’ve never advertised on LinkedIn; how much will we get from that?”). This is hard and really relies on a lot of hands on experience and marketing expertise for it to work well. Machine Learning of the type that Forecast Forge does isn’t very helpful here - an ML approach that might work is taking data from a lot of people who have done the thing and then trying to figure it out from there
  2. Forecasting doing more (or less) of something you’ve done a bit of in the past. The big one here is “what if we increased/decreased the budget?”" but it might also be things like turning on retargeting, the site going into sale or above the line ad campaigns (e.g. TV). Forecast Forge can help quite a lot with this kind of thing
  3. Estimating trends and changes in everything else - e.g. what is the seasonality for CPC and conversion rate? Is overall search volume in this niche going up or down? Forecast Forge can help here too.

Type one forecasts, where you forecast the impact of something new, are a very interesting challenge; the way to approach them from a Machine Learning angle is to collect data from other people who have done the new thing and then try to figure out which of the other people your client is most similar too. This is basically what people do too when they draw on their experience to make an estimate. Forecast Forge doesn’t store your data, know anything about the sector your business is in, or know exactly what metrics you are forecasting so this is not something it supports (there are a few ways you could “hack” this - ask me if you want to test them).

Forecasting doing more or less of something that you’ve already been doing is really important for paid media; this is how you estimate the impact of increasing or decreasing your budgets which is a super-important and frequently demanded forecast for everyone.

Read more

How often should you forecast?

March 22, 2021

How often should you be updating forecasts or making new ones? The answer depends on what you mean by “forecast” and can range from “as often as possible” through to something much less frequent.

When you use machine learning to make a forecast there are three parts to it:

  1. The model
  2. The parameters
  3. The data

Making changes to any these could be called “forecasting”.

The three categories are a little bit fuzzy. For example it isn’t totally clear what the boundary is between parameters and model but the basic idea is that you can make very frequent updates for things near the bottom of the list and should be a bit more cautious with things at the top of the list.

This might be easier to understand with an example:

An easy way to make a forecast that includes weekly seasonality is to make the forecast for the next day a weighted sum of the previous seven days. By giving more weight to what happened seven days ago you will see a weekly pattern in the forecast.

The prediction for each day is the weighted sum of the previous seven days

Read more

The Forecast Forge Bet and Six Month Update

March 4, 2021

Earlier this week I tweeted the below as part of another conversation

I thought this would be a good opportunity to unpack my hypotheses about why Forecast Forge is a good/interesting idea. And also a good time to do a quick business update since it has been just over six months since launch.

Data Science and Domain Knowledge

Venn diagram of Data Science skills in 2017 from

Read more

Monthly Forecasts and Missing Data

February 25, 2021

One of the most requested feature since Forecast Forge launched has been the ability to forecast from monthly data and not just daily data.

Daily data is really easy to export from Google Analytics and other tools but at a more strategic level no one cares very much about what performance on 14th July looks like as long as July as a whole is doing OK. When planning for the year or months ahead it is much more normal to set a monthly target rather than look at things day by day.

My personal opinion is that working with daily data gives will give better results when you start adding helper columns - particularly helper columns that have an effect on a particular day (this is most of them in my experience). But it is also tedious to make a quick daily forecast and then have to aggregate the results to a monthly level before presenting them to a client or boss and I want to remove as much tedium as possible for my users.

Typical Forecast Forge user realising they need to convert from a daily forecast back to monthly data. (and torching my carefully calibrated predictive intervals in the process)

Read more

Get updates in your inbox